base¶
- class common.optim.dl.litmodule.base.BaseLitModuleConfig(wandb_column_names, wandb_train_log_interval=50, wandb_num_samples=3)[source]¶
Bases:
object
.
- Parameters:
wandb_train_log_interval (
int
, default:50
) – 0 means no logging.
- class common.optim.dl.litmodule.base.BaseLitModule(config, nnmodule, optimizer, scheduler)[source]¶
Bases:
LightningModule
,ABC
.
We propose to split the PyTorch module definition from the Lightning module definition for (arguably) better code organization, reuse & readability. As a result, each Lightning module receives a PyTorch module as an argument which it turns into an instance attribute. This is despite the fact that Lightning modules subclass PyTorch modules, and thus allow PyTorch module method definitions in the Lightning module.
- on_save_checkpoint(checkpoint)[source]¶
Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.
- Parameters:
checkpoint (
dict
[str
,Any
]) – The full checkpoint dictionary before it gets dumped to a file. Implementations of this hook can insert additional data into this dictionary.- Return type:
Example:
def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
Note
Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.
- on_load_checkpoint(checkpoint)[source]¶
Called by Lightning to restore your model. If you saved something with
on_save_checkpoint()
this is your chance to restore this.- Parameters:
checkpoint (
dict
[str
,Any
]) – Loaded checkpoint- Return type:
Example:
def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
Note
Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.
- optimizer_step(*args, **kwargs)[source]¶
Override this method to adjust the default way the
Trainer
calls the optimizer.By default, Lightning calls
step()
andzero_grad()
as shown in the example. This method (andzero_grad()
) won’t be called during the accumulation phase whenTrainer(accumulate_grad_batches != 1)
. Overriding this hook has no benefit with manual optimization.- Parameters:
epoch – Current epoch
batch_idx – Index of current batch
optimizer – A PyTorch optimizer
optimizer_closure – The optimizer closure. This closure must be executed as it includes the calls to
training_step()
,optimizer.zero_grad()
, andbackward()
.
- Return type:
Examples:
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_closure): # Add your custom logic to run directly before `optimizer.step()` optimizer.step(closure=optimizer_closure) # Add your custom logic to run directly after `optimizer.step()`
- on_validation_epoch_end()[source]¶
Called in the validation loop at the very end of the epoch.
- Return type:
- abstractmethod step(data, stage)[source]¶
.
- Return type:
Num[Tensor, '*_']
- Returns:
The loss value(s).
- final training_step(data)[source]¶
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Return type:
Num[Tensor, '*_']
- Returns:
Tensor
- The loss tensordict
- A dictionary which can include any keys, but must include the key'loss'
in the case of automatic optimization.None
- In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
To use multiple optimizers, you can switch to ‘manual optimization’ and control their stepping:
def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step()
Note
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.
- final validation_step(data, *args, **kwargs)[source]¶
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Return type:
Num[Tensor, '*_']
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- final test_step(data)[source]¶
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Return type:
Num[Tensor, '*_']
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- final configure_optimizers()[source]¶
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
- Return type:
- Returns:
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
Some things to know:
Lightning calls
.backward()
and.step()
automatically in case of automatic optimization.If a learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizer.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.
If you need to control how often the optimizer steps, override the
optimizer_step()
hook.