base

class common.optim.dl.litmodule.base.BaseLitModuleConfig(wandb_column_names, wandb_train_log_interval=50, wandb_num_samples=3)[source]

Bases: object

.

Parameters:

wandb_train_log_interval (int, default: 50) – 0 means no logging.

class common.optim.dl.litmodule.base.BaseLitModule(config, nnmodule, optimizer, scheduler)[source]

Bases: LightningModule, ABC

.

We propose to split the PyTorch module definition from the Lightning module definition for (arguably) better code organization, reuse & readability. As a result, each Lightning module receives a PyTorch module as an argument which it turns into an instance attribute. This is despite the fact that Lightning modules subclass PyTorch modules, and thus allow PyTorch module method definitions in the Lightning module.

on_save_checkpoint(checkpoint)[source]

Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.

Parameters:

checkpoint (dict[str, Any]) – The full checkpoint dictionary before it gets dumped to a file. Implementations of this hook can insert additional data into this dictionary.

Return type:

None

Example:

def on_save_checkpoint(self, checkpoint):
    # 99% of use cases you don't need to implement this method
    checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object

Note

Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.

on_load_checkpoint(checkpoint)[source]

Called by Lightning to restore your model. If you saved something with on_save_checkpoint() this is your chance to restore this.

Parameters:

checkpoint (dict[str, Any]) – Loaded checkpoint

Return type:

None

Example:

def on_load_checkpoint(self, checkpoint):
    # 99% of the time you don't need to implement this method
    self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']

Note

Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.

on_validation_end()[source]

Called at the end of validation.

Return type:

None

optimizer_step(*args, **kwargs)[source]

Override this method to adjust the default way the Trainer calls the optimizer.

By default, Lightning calls step() and zero_grad() as shown in the example. This method (and zero_grad()) won’t be called during the accumulation phase when Trainer(accumulate_grad_batches != 1). Overriding this hook has no benefit with manual optimization.

Parameters:
  • epoch – Current epoch

  • batch_idx – Index of current batch

  • optimizer – A PyTorch optimizer

  • optimizer_closure – The optimizer closure. This closure must be executed as it includes the calls to training_step(), optimizer.zero_grad(), and backward().

Return type:

None

Examples:

def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_closure):
    # Add your custom logic to run directly before `optimizer.step()`

    optimizer.step(closure=optimizer_closure)

    # Add your custom logic to run directly after `optimizer.step()`
on_validation_epoch_end()[source]

Called in the validation loop at the very end of the epoch.

Return type:

None

abstractmethod step(data, stage)[source]

.

Return type:

Num[Tensor, '*_']

Returns:

The loss value(s).

final training_step(data)[source]

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters:
  • batch – The output of your data iterable, normally a DataLoader.

  • batch_idx – The index of this batch.

  • dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Return type:

Num[Tensor, '*_']

Returns:

  • Tensor - The loss tensor

  • dict - A dictionary which can include any keys, but must include the key 'loss' in the case of automatic optimization.

  • None - In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.

In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Example:

def training_step(self, batch, batch_idx):
    x, y, z = batch
    out = self.encoder(x)
    loss = self.loss(out, x)
    return loss

To use multiple optimizers, you can switch to ‘manual optimization’ and control their stepping:

def __init__(self):
    super().__init__()
    self.automatic_optimization = False


# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx):
    opt1, opt2 = self.optimizers()

    # do training_step with encoder
    ...
    opt1.step()
    # do training_step with decoder
    ...
    opt2.step()

Note

When accumulate_grad_batches > 1, the loss returned here will be automatically normalized by accumulate_grad_batches internally.

final validation_step(data, *args, **kwargs)[source]

Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.

Parameters:
  • batch – The output of your data iterable, normally a DataLoader.

  • batch_idx – The index of this batch.

  • dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Return type:

Num[Tensor, '*_']

Returns:

  • Tensor - The loss tensor

  • dict - A dictionary. Can include any keys, but must include the key 'loss'.

  • None - Skip to the next batch.

# if you have one val dataloader:
def validation_step(self, batch, batch_idx): ...


# if you have multiple val dataloaders:
def validation_step(self, batch, batch_idx, dataloader_idx=0): ...

Examples:

# CASE 1: A single validation dataset
def validation_step(self, batch, batch_idx):
    x, y = batch

    # implement your own
    out = self(x)
    loss = self.loss(out, y)

    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)

    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

    # log the outputs!
    self.log_dict({'val_loss': loss, 'val_acc': val_acc})

If you pass in multiple val dataloaders, validation_step() will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.

# CASE 2: multiple validation dataloaders
def validation_step(self, batch, batch_idx, dataloader_idx=0):
    # dataloader_idx tells you which dataset this is.
    ...

Note

If you don’t need to validate you don’t need to implement this method.

Note

When the validation_step() is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.

final test_step(data)[source]

Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.

Parameters:
  • batch – The output of your data iterable, normally a DataLoader.

  • batch_idx – The index of this batch.

  • dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Return type:

Num[Tensor, '*_']

Returns:

  • Tensor - The loss tensor

  • dict - A dictionary. Can include any keys, but must include the key 'loss'.

  • None - Skip to the next batch.

# if you have one test dataloader:
def test_step(self, batch, batch_idx): ...


# if you have multiple test dataloaders:
def test_step(self, batch, batch_idx, dataloader_idx=0): ...

Examples:

# CASE 1: A single test dataset
def test_step(self, batch, batch_idx):
    x, y = batch

    # implement your own
    out = self(x)
    loss = self.loss(out, y)

    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)

    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

    # log the outputs!
    self.log_dict({'test_loss': loss, 'test_acc': test_acc})

If you pass in multiple test dataloaders, test_step() will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.

# CASE 2: multiple test dataloaders
def test_step(self, batch, batch_idx, dataloader_idx=0):
    # dataloader_idx tells you which dataset this is.
    ...

Note

If you don’t need to test you don’t need to implement this method.

Note

When the test_step() is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.

final configure_optimizers()[source]

Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.

Return type:

tuple[list[Optimizer], list[LRScheduler]]

Returns:

Any of these 6 options.

  • Single optimizer.

  • List or Tuple of optimizers.

  • Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple lr_scheduler_config).

  • Dictionary, with an "optimizer" key, and (optionally) a "lr_scheduler" key whose value is a single LR scheduler or lr_scheduler_config.

  • None - Fit will run without any optimizer.

The lr_scheduler_config is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.

lr_scheduler_config = {
    # REQUIRED: The scheduler instance
    "scheduler": lr_scheduler,
    # The unit of the scheduler's step size, could also be 'step'.
    # 'epoch' updates the scheduler on epoch end whereas 'step'
    # updates it after a optimizer update.
    "interval": "epoch",
    # How many epochs/steps should pass between calls to
    # `scheduler.step()`. 1 corresponds to updating the learning
    # rate after every epoch/step.
    "frequency": 1,
    # Metric to monitor for schedulers like `ReduceLROnPlateau`
    "monitor": "val_loss",
    # If set to `True`, will enforce that the value specified 'monitor'
    # is available when the scheduler is updated, thus stopping
    # training if not found. If set to `False`, it will only produce a warning
    "strict": True,
    # If using the `LearningRateMonitor` callback to monitor the
    # learning rate progress, this keyword can be used to specify
    # a custom logged name
    "name": None,
}

When there are schedulers in which the .step() method is conditioned on a value, such as the torch.optim.lr_scheduler.ReduceLROnPlateau scheduler, Lightning requires that the lr_scheduler_config contains the keyword "monitor" set to the metric name that the scheduler should be conditioned on.

Metrics can be made available to monitor by simply logging it using self.log('metric_to_track', metric_val) in your LightningModule.

Note

Some things to know:

  • Lightning calls .backward() and .step() automatically in case of automatic optimization.

  • If a learning rate scheduler is specified in configure_optimizers() with key "interval" (default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s .step() method automatically in case of automatic optimization.

  • If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizer.

  • If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.

  • If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.

  • If you need to control how often the optimizer steps, override the optimizer_step() hook.